The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. This study show the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts.
A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e., chickens, humans or mice.
Results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, the study supports co-evolution of the host and its intestinal lactic acid bacteria.
Original Source:
Microbes and Human Health: News about microbiology, microbes, human microbiome, human and animal pathogen bacteria, probiotics and functional foods and its relationship with human health
Showing posts with label Bacterial populations. Show all posts
Showing posts with label Bacterial populations. Show all posts
High throughput DNA sequencing to detect differences in the subgingival plaque microbiome in elderly subjects with and without dementia
To investigate the potential association between oral health and cognitive function, a pilot study was conducted to evaluate high throughput DNA sequencing of the V3 region of the 16S ribosomal RNA gene for determining the relative abundance of bacterial taxa in subgingival plaque from older adults with or without dementia.
Subgingival plaque samples were obtained from ten individuals at least 70 years old who participated in a study to assess oral health and cognitive function. DNA was isolated from the samples and a gene segment from the V3 portion of the 16S bacterial ribosomal RNA gene was amplified and sequenced using an Illumina HiSeq1000 DNA sequencer. Bacterial populations found in the subgingival plaque were identified and assessed with respect to the cognitive status and oral health of the participants who provided the samples.
More than two million high quality DNA sequences were obtained from each sample. Individuals differed greatly in the mix of phylotypes, but different sites from different subgingival depths in the same subject were usually similar. No consistent differences were observed in this small sample between subjects separated by levels of oral health, sex, or age; however a consistently higher level of Fusobacteriaceae and a generally lower level of Prevotellaceae was seen in subjects without dementia, although the difference did not reach statistical significance, possibly because of the small sample size.
The results from this pilot study provide suggestive evidence that alterations in the subgingival microbiome are associated with changes in cognitive function, and provide support for an expanded analysis of the role of the oral microbiome in dementia.
Original Source:
Subgingival plaque samples were obtained from ten individuals at least 70 years old who participated in a study to assess oral health and cognitive function. DNA was isolated from the samples and a gene segment from the V3 portion of the 16S bacterial ribosomal RNA gene was amplified and sequenced using an Illumina HiSeq1000 DNA sequencer. Bacterial populations found in the subgingival plaque were identified and assessed with respect to the cognitive status and oral health of the participants who provided the samples.
More than two million high quality DNA sequences were obtained from each sample. Individuals differed greatly in the mix of phylotypes, but different sites from different subgingival depths in the same subject were usually similar. No consistent differences were observed in this small sample between subjects separated by levels of oral health, sex, or age; however a consistently higher level of Fusobacteriaceae and a generally lower level of Prevotellaceae was seen in subjects without dementia, although the difference did not reach statistical significance, possibly because of the small sample size.
The results from this pilot study provide suggestive evidence that alterations in the subgingival microbiome are associated with changes in cognitive function, and provide support for an expanded analysis of the role of the oral microbiome in dementia.
Original Source:
Etiquetas:
16S ribosomal RNA,
Bacterial populations,
cognitive function,
dementia,
DNA,
Fusobacteriaceae,
Illumina HiSeq1000 DNA sequencer,
microbiome,
oral health,
Prevotellaceae,
Subgingival plaque
Subscribe to:
Posts (Atom)